3.5.26 \(\int \frac {a+b \log (c (d+\frac {e}{\sqrt {x}})^n)}{x^2} \, dx\) [426]

Optimal. Leaf size=65 \[ \frac {b n}{2 x}-\frac {b d n}{e \sqrt {x}}+\frac {b d^2 n \log \left (d+\frac {e}{\sqrt {x}}\right )}{e^2}-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )}{x} \]

[Out]

1/2*b*n/x+b*d^2*n*ln(d+e/x^(1/2))/e^2+(-a-b*ln(c*(d+e/x^(1/2))^n))/x-b*d*n/e/x^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {2504, 2442, 45} \begin {gather*} -\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )}{x}+\frac {b d^2 n \log \left (d+\frac {e}{\sqrt {x}}\right )}{e^2}-\frac {b d n}{e \sqrt {x}}+\frac {b n}{2 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Log[c*(d + e/Sqrt[x])^n])/x^2,x]

[Out]

(b*n)/(2*x) - (b*d*n)/(e*Sqrt[x]) + (b*d^2*n*Log[d + e/Sqrt[x]])/e^2 - (a + b*Log[c*(d + e/Sqrt[x])^n])/x

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2442

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[(f + g*
x)^(q + 1)*((a + b*Log[c*(d + e*x)^n])/(g*(q + 1))), x] - Dist[b*e*(n/(g*(q + 1))), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 2504

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rubi steps

\begin {align*} \int \frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )}{x^2} \, dx &=-\left (2 \text {Subst}\left (\int x \left (a+b \log \left (c (d+e x)^n\right )\right ) \, dx,x,\frac {1}{\sqrt {x}}\right )\right )\\ &=-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )}{x}+(b e n) \text {Subst}\left (\int \frac {x^2}{d+e x} \, dx,x,\frac {1}{\sqrt {x}}\right )\\ &=-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )}{x}+(b e n) \text {Subst}\left (\int \left (-\frac {d}{e^2}+\frac {x}{e}+\frac {d^2}{e^2 (d+e x)}\right ) \, dx,x,\frac {1}{\sqrt {x}}\right )\\ &=\frac {b n}{2 x}-\frac {b d n}{e \sqrt {x}}+\frac {b d^2 n \log \left (d+\frac {e}{\sqrt {x}}\right )}{e^2}-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )}{x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 68, normalized size = 1.05 \begin {gather*} -\frac {a}{x}+\frac {b n}{2 x}-\frac {b d n}{e \sqrt {x}}+\frac {b d^2 n \log \left (d+\frac {e}{\sqrt {x}}\right )}{e^2}-\frac {b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Log[c*(d + e/Sqrt[x])^n])/x^2,x]

[Out]

-(a/x) + (b*n)/(2*x) - (b*d*n)/(e*Sqrt[x]) + (b*d^2*n*Log[d + e/Sqrt[x]])/e^2 - (b*Log[c*(d + e/Sqrt[x])^n])/x

________________________________________________________________________________________

Maple [A]
time = 0.03, size = 63, normalized size = 0.97

method result size
derivativedivides \(-\frac {a}{x}+\frac {b n}{2 x}-\frac {b \ln \left (c \,{\mathrm e}^{n \ln \left (d +\frac {e}{\sqrt {x}}\right )}\right )}{x}+\frac {b \,d^{2} n \ln \left (d +\frac {e}{\sqrt {x}}\right )}{e^{2}}-\frac {b d n}{e \sqrt {x}}\) \(63\)
default \(-\frac {a}{x}+\frac {b n}{2 x}-\frac {b \ln \left (c \,{\mathrm e}^{n \ln \left (d +\frac {e}{\sqrt {x}}\right )}\right )}{x}+\frac {b \,d^{2} n \ln \left (d +\frac {e}{\sqrt {x}}\right )}{e^{2}}-\frac {b d n}{e \sqrt {x}}\) \(63\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*ln(c*(d+e/x^(1/2))^n))/x^2,x,method=_RETURNVERBOSE)

[Out]

-a/x+1/2*b*n/x-b/x*ln(c*exp(n*ln(d+e/x^(1/2))))+b*d^2*n*ln(d+e/x^(1/2))/e^2-b*d*n/e/x^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 76, normalized size = 1.17 \begin {gather*} \frac {1}{2} \, {\left (2 \, d^{2} e^{\left (-3\right )} \log \left (d \sqrt {x} + e\right ) - d^{2} e^{\left (-3\right )} \log \left (x\right ) - \frac {{\left (2 \, d \sqrt {x} - e\right )} e^{\left (-2\right )}}{x}\right )} b n e - \frac {b \log \left (c {\left (d + \frac {e}{\sqrt {x}}\right )}^{n}\right )}{x} - \frac {a}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(d+e/x^(1/2))^n))/x^2,x, algorithm="maxima")

[Out]

1/2*(2*d^2*e^(-3)*log(d*sqrt(x) + e) - d^2*e^(-3)*log(x) - (2*d*sqrt(x) - e)*e^(-2)/x)*b*n*e - b*log(c*(d + e/
sqrt(x))^n)/x - a/x

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 67, normalized size = 1.03 \begin {gather*} -\frac {{\left (2 \, b d n \sqrt {x} e + 2 \, b e^{2} \log \left (c\right ) - {\left (b n - 2 \, a\right )} e^{2} - 2 \, {\left (b d^{2} n x - b n e^{2}\right )} \log \left (\frac {d x + \sqrt {x} e}{x}\right )\right )} e^{\left (-2\right )}}{2 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(d+e/x^(1/2))^n))/x^2,x, algorithm="fricas")

[Out]

-1/2*(2*b*d*n*sqrt(x)*e + 2*b*e^2*log(c) - (b*n - 2*a)*e^2 - 2*(b*d^2*n*x - b*n*e^2)*log((d*x + sqrt(x)*e)/x))
*e^(-2)/x

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 360 vs. \(2 (58) = 116\).
time = 51.83, size = 360, normalized size = 5.54 \begin {gather*} \begin {cases} - \frac {2 a d e^{2} x^{3}}{2 d e^{2} x^{4} + 2 e^{3} x^{\frac {7}{2}}} - \frac {2 a e^{3} x^{\frac {5}{2}}}{2 d e^{2} x^{4} + 2 e^{3} x^{\frac {7}{2}}} + \frac {2 b d^{3} x^{4} \log {\left (c \left (d + \frac {e}{\sqrt {x}}\right )^{n} \right )}}{2 d e^{2} x^{4} + 2 e^{3} x^{\frac {7}{2}}} - \frac {2 b d^{2} e n x^{\frac {7}{2}}}{2 d e^{2} x^{4} + 2 e^{3} x^{\frac {7}{2}}} + \frac {2 b d^{2} e x^{\frac {7}{2}} \log {\left (c \left (d + \frac {e}{\sqrt {x}}\right )^{n} \right )}}{2 d e^{2} x^{4} + 2 e^{3} x^{\frac {7}{2}}} - \frac {b d e^{2} n x^{3}}{2 d e^{2} x^{4} + 2 e^{3} x^{\frac {7}{2}}} - \frac {2 b d e^{2} x^{3} \log {\left (c \left (d + \frac {e}{\sqrt {x}}\right )^{n} \right )}}{2 d e^{2} x^{4} + 2 e^{3} x^{\frac {7}{2}}} + \frac {b e^{3} n x^{\frac {5}{2}}}{2 d e^{2} x^{4} + 2 e^{3} x^{\frac {7}{2}}} - \frac {2 b e^{3} x^{\frac {5}{2}} \log {\left (c \left (d + \frac {e}{\sqrt {x}}\right )^{n} \right )}}{2 d e^{2} x^{4} + 2 e^{3} x^{\frac {7}{2}}} & \text {for}\: e \neq 0 \\- \frac {a + b \log {\left (c d^{n} \right )}}{x} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*ln(c*(d+e/x**(1/2))**n))/x**2,x)

[Out]

Piecewise((-2*a*d*e**2*x**3/(2*d*e**2*x**4 + 2*e**3*x**(7/2)) - 2*a*e**3*x**(5/2)/(2*d*e**2*x**4 + 2*e**3*x**(
7/2)) + 2*b*d**3*x**4*log(c*(d + e/sqrt(x))**n)/(2*d*e**2*x**4 + 2*e**3*x**(7/2)) - 2*b*d**2*e*n*x**(7/2)/(2*d
*e**2*x**4 + 2*e**3*x**(7/2)) + 2*b*d**2*e*x**(7/2)*log(c*(d + e/sqrt(x))**n)/(2*d*e**2*x**4 + 2*e**3*x**(7/2)
) - b*d*e**2*n*x**3/(2*d*e**2*x**4 + 2*e**3*x**(7/2)) - 2*b*d*e**2*x**3*log(c*(d + e/sqrt(x))**n)/(2*d*e**2*x*
*4 + 2*e**3*x**(7/2)) + b*e**3*n*x**(5/2)/(2*d*e**2*x**4 + 2*e**3*x**(7/2)) - 2*b*e**3*x**(5/2)*log(c*(d + e/s
qrt(x))**n)/(2*d*e**2*x**4 + 2*e**3*x**(7/2)), Ne(e, 0)), (-(a + b*log(c*d**n))/x, True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 162 vs. \(2 (57) = 114\).
time = 3.45, size = 162, normalized size = 2.49 \begin {gather*} \frac {1}{2} \, {\left (\frac {4 \, {\left (d \sqrt {x} + e\right )} b d n \log \left (\frac {d \sqrt {x} + e}{\sqrt {x}}\right )}{\sqrt {x}} - \frac {2 \, {\left (d \sqrt {x} + e\right )}^{2} b n \log \left (\frac {d \sqrt {x} + e}{\sqrt {x}}\right )}{x} - \frac {4 \, {\left (d \sqrt {x} + e\right )} b d n}{\sqrt {x}} + \frac {4 \, {\left (d \sqrt {x} + e\right )} b d \log \left (c\right )}{\sqrt {x}} + \frac {{\left (d \sqrt {x} + e\right )}^{2} b n}{x} - \frac {2 \, {\left (d \sqrt {x} + e\right )}^{2} b \log \left (c\right )}{x} + \frac {4 \, {\left (d \sqrt {x} + e\right )} a d}{\sqrt {x}} - \frac {2 \, {\left (d \sqrt {x} + e\right )}^{2} a}{x}\right )} e^{\left (-2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(d+e/x^(1/2))^n))/x^2,x, algorithm="giac")

[Out]

1/2*(4*(d*sqrt(x) + e)*b*d*n*log((d*sqrt(x) + e)/sqrt(x))/sqrt(x) - 2*(d*sqrt(x) + e)^2*b*n*log((d*sqrt(x) + e
)/sqrt(x))/x - 4*(d*sqrt(x) + e)*b*d*n/sqrt(x) + 4*(d*sqrt(x) + e)*b*d*log(c)/sqrt(x) + (d*sqrt(x) + e)^2*b*n/
x - 2*(d*sqrt(x) + e)^2*b*log(c)/x + 4*(d*sqrt(x) + e)*a*d/sqrt(x) - 2*(d*sqrt(x) + e)^2*a/x)*e^(-2)

________________________________________________________________________________________

Mupad [B]
time = 0.43, size = 60, normalized size = 0.92 \begin {gather*} \frac {b\,n}{2\,x}-\frac {a}{x}-\frac {b\,\ln \left (c\,{\left (d+\frac {e}{\sqrt {x}}\right )}^n\right )}{x}-\frac {b\,d\,n}{e\,\sqrt {x}}+\frac {b\,d^2\,n\,\ln \left (d+\frac {e}{\sqrt {x}}\right )}{e^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*log(c*(d + e/x^(1/2))^n))/x^2,x)

[Out]

(b*n)/(2*x) - a/x - (b*log(c*(d + e/x^(1/2))^n))/x - (b*d*n)/(e*x^(1/2)) + (b*d^2*n*log(d + e/x^(1/2)))/e^2

________________________________________________________________________________________